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Starting with a brief description of dyons and gravito-dyons, combined field 
equations and the equation of motion for generalized electromagnetic and 
generalized gravito-Heavisidian fields are derived in a manifestly covariant way. 
A non-Abelian gauge theory of dyons and gravito-dyons is described in terms of 
a generalized Yang-Mills potential, field strengths, and generalized field equa- 
tions each carrying electric and magnetic constituents. A null tetrad formulation 
of a generalized Yang-Mills potential and field strength of dyons is discussed in 
detail in terms of symmetric spinors and spin coefficients. Generalized Yang- 
Mills field equations of dyons are rewritten in terms of null tetrad notation, and 
dyon solutions of source-free Dirac equations are obtained. 

1. I N T R O D U C T I O N  

The theory of magnetic charge, propounded by Dirac (1931) for the 
symmetry of Maxwell's equations, in a manifest way was based on "classi- 
cal magnetic monopole" without prediction of its mass. If the "classical 
electron radius" is equal to the "classical monopole radius," the mass of 
monopole becomes Mm=4700me~2.4 GeV (Craigie, 1986). Such 
monopoles are known as pointlike monopoles. 't Hooft (1974) and 
Polyakov (1974) examined the existence of monopoles in grand unified 
theories and estimated the monopole mass Mm ~ Mx/~v, where Mx is the 
scale of symmetry breaking leading to the U(1) factor and ~v is the 
unification coupling constant. Such monopoles are known as superheavy 
monopoles, with their estimated mass Mm ,~ 1016 GeV. In supersymmetric 
grand unified theories the monopoles seem to be more massive and if 
gravity is taken into the unifying picture, then monopoles could be even 
more massive, M m ~ 10WGeV (Craigie, 1986). Magnetic monopoles of 
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lowest mass are expected to be stable since magnetic charge should be 
conserved like electric charges. Observations made by Cabrera (1982) also 
aroused the interest of many to study monopoles and their potential 
importance in connection with quark confinement ('t Hooft, 1976; Cho, 
1980), the magnetic condensation of vacuum ('t Hooft, 1981), CP violation 
(Witten, 1979), proton decay (Rubakov, 1982; Callan, 1982), grand unified 
theories (Georgi and Glashow, 1974), and supersymmetry. Despite of the 
enormous potential importance of monopoles, the formalism necessary to 
describe them has been clumsy and manifestly noncovariant. For instance, 
in addition to the problem raised by the Dirac (1931) veto, there is 
Goldhaber's (1976) paradox about the spin-statistics relationship. This 
paradox could be solved only by taking electric and magnetic charges 
together (i.e., dyons). Schwinger (1969) give the existence of such dyons 
was pointed out by Julia and Zee (1975) by extending the 't Hooft- 
Polyakov model in the non-Abelian gauge theory of monopoles. 

Quantum mechanical excitations of the fundamental monopoles in- 
clude dyons. Dyons arise automatically from the semiclassical quantization 
of the global charge rotation degrees of freedom of monopoles. In connec- 
tion with the explanation of CP violation in terms of nonzero vacuum 
angle (Witten, 1979) of the world. The monopoles are necessarily dyons 
and the Dirac quantization condition permits dyons to have an anomalous 
electric charge. The existence of these dyons can remove the objections 
(Goldhaber, 1976) to the spin-statistics relationship for monopoles and 
also those raised by pantaleone (1963) toward the experimental results of 
Fairbank et al. (1981). On the other hand, Carmeli (1977a,b, 1982; Carmeli 
and Huleihil, 1984) described a null tetrad formalism of the Yang-Mills 
field equations and derived the exact solutions of the Yang-Mills source- 
free equations, written in null tetrad notation. These solutions include both 
"electric" and "magnetic" charges and may also be considered as dyon 
solutions. 

Cabibbo and Ferrari (1962) introduced the idea of two-four potentials 
for avoiding arbitrary string variables. Rajput et al. (1983a, t984, 1986, 
1988) constructed a manifestly covariant self-consistent quantum field 
theory of dyons each carrying generalized charge, generalized potential, 
generalized current, field, and generalized field strength antisymmetric 
tensor as complex quantities with electric and magnetic charges as their real 
and imaginary constituents. Rajput et al. (1983b, 1986; Rajput and Kumar, 
1983) analyzed the behavior of dyonic fields in non-Abelian gauge theory 
and developed (Rajput et al., 1982, 1985) quaternionic formulation of 
generalized fields of dyons. Cantani (1980) and Bisht et al. (1990) postu- 
lated the existence of dual mass (Heavisidian monopole) in a linear 
gravitational field, and keeping in view the discrepancies of the Dirac 
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(1931) veto, the structural symmetry between generalized electromagnetic 
and gravito-Heavisidian fields of dyons (gravito-dyons) was demonstrated 
by Rajput (1982, 1984; Rajput and Gunwant, 1989) and the relevant 
unified field equations were derived in a unique, consistent, and symmetri- 
cal way. A quaternion gauge theory of unified non-Abelian fields of dyons 
and gravito-dyons was constructed by Bisht et al. (1991a) and the corre- 
sponding quantum equations were derived. 

Considering the resemblance between null tetrad components and 
2 x 2 Pauli spin matrices, Bisht et al. (1991b) constructed the spinor 
equivalents of generalized fields of dyons and derived the relevant quantum 
equations of dyons by means of null tetrad notation. Extending the null 
tetrad formalism to the case of a non-Abelian Yang-Mills field, in the 
present paper we reformulate the generalized Yang-MiUs potential and 
field strength of dyons in terms of null tetrad notation and derive the 
corresponding field equations in a unique and consistent way. Starting with 
a brief description of dyons and gravito-dyons, we combine the generalized 
fields of dyons and gravito-dyons and derive the corresponding field 
equations and equation of motion in a manifestly covariant way. The 
non-Abelian gauge theory of dyons and gravito-dyons is reformulated from 
two Yang-Mills gauge potentials associated with the electric and magnetic 
coupling parameters of dyons. The spinor equivalents of the generalized 
Yang-Mills potential and field strength antisymmetric tensor of dy0ns are 
constructed in terms of symmetric spinor components by means of null 
tetrad notations and spin coefficients. A null tetrad formulation of/non - 
Abelian dyons is also constructed in flat space-time and corresponding 
Yang-Mills field equations are also derived. It is emphasized that two 
potential descriptions of dyons are compulsory in the Abelian case while in 
the non-Abelian case dyon solutions are obtained in terms of duality 
transformations between spinors, potentials, and fields. It is shown that 
dyon solutions exhibit both electric and magnetic charges. 

2. GENERALIZED ELECTROMAGNETIC FIELDS OF DYONS 

The generalized charge on dyons is defined as 

q = e  - i g  (2.1) 

where e and g are, respectively, the electric and magnetic charge. Two 
four-potentials {A~, } = {ae, A} and {B, } = {ag,  B} were introduced by 
Rajput et al. (1982, 1984, 1988) to avoid the use of arbitrary string 
variables, and are known as electric and magnetic four-potentials, respec- 
tively. These two potentials lead to the following covariant forms of the 
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Maxwell-Dirac equation (in terms of natural units c = h = 1): 

F.~,~ = j .  (p, v = 0, 1, 2, 3) (2.2) 
d Fu~,~ = k. 

where {j~} = {pC, j} and {k~} = {pro, k} are, respectively, the electric and 
magnetic four-current source densities of dyons and 

F,,~ =e,~ - f l ~  

Fay = H.~ + Ea,, 

E~ = A.~ - A v,. 

(2.3a) 

(2.3b) 

(2.3c) 

(2.3d) 

(2.3e) 

(2.3f) 

where 

G,~ = F~v - is  (2.7) 

is called the generalized electromagnetic field tensor of dyons. Equations 
(2.2) and (2.6) are invariant under Lorentz transformations and duality 
transformations, 

(F, F d) = ( F  cos 0 + F d sin 0, - F sin 0 + F d cos 0) (2.8a) 

(A~, ,B,)  = ( A ,  cos 0 + B u sin 0, - A u  sin 0 + B~ cos 0) (2.8b) 

( j , ,  ku) = ( j ,  cos 0 + k, sin 0, - j~  sin 0 + k, cos 0) (2.8c) 

where we have used 

g = _ _ = _ _ = B ,  k~ - t a n 0  (2.9) 
e A. L 

n,,v=B.v -B~,. 
E~ v 1 ~p,~ = ~E#vpa 1~ 

Hay 1 ~Tpcr 
~- -~E#vpa 1-1 

In equations (2.2) and (2.3) the symbol d denotes the dual part, a comma 
represents partial space-time derivative, E.v,. is a 4-index Levi-Civita symbol, 
and #, v,/~, and a are space-time indices having values 0, 1, 2, 3. Assuming 
the generalized four-current and generalized four-potential of  a dyon as 

J~, =j~,  - i k ,  (2.4) 

V .  = a~, - iB u (2.5) 

with the help of  equation (2.2), we write the following generalized field 
equation of dyons: 

G,v,~ = J ,  (2.6) 
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so that the generalized charge of a dyon (2.1) may be expressed as 

q = [qle-,O (2.10) 

In addition to dual symmetry, the covariant field equation (2.6) leads to the 
following conservation laws (Bisht et  al., 1991b; Rajput and Prakash Om, 
1978): 

(a) Invariance under a pure rotation in charge space or its combina- 
tion with a transformation containing simultaneous space and time reflec- 
tion (strong symmetry). 

(b) A weak symmetry under charge reflection combined with space or 
time reflections (not both). 

(c) A weak symmetry under P T  (combined operation of parity and 
time reversal) and a strong symmetry under C P T  (combined operation of 
charge conjugation, parity, and time reversal). 

3. F I E L D S  A S S O C I A T E D  W I T H  GRAVITO-DYONS 

Postulating the existence of a dual mass associated with the gravimag- 
netic (Heavisidian) field playing the role of the monopole in the linear 
theory of gravitation and keeping in mind the difficulties faced by Dirac 
(1931) veto-like electromagnetism, Rajput et  al. (1982, 1984; Bisht et  al., 
1990; Rajput and Gunwant, 1989) describe a theory of particles carrying 
simultaneously gravitational and Heavisidian charges (i.e., gravito-dyons). 
The generalized charge of a gravito-dyon is defined as 

q = m --  ih(i = J -  1) (3.1) 

where m and h are masses (charges) associated with gravitational and 
Heavisidian (g-magnetic) fields. Adopting the same method as in Section 2, 
we write the following tensorial form of the Maxwell-Dirac equation for 
gravito-dyons: 

f~,v = _j(o) 
(3.2) 

= 

where {J~} and {jH} are, respectively, gravitational and Heavisidian 
four-current source densities and 

f~v = L.v - Kay (3.3a) 

fd = K~ + Ld~ (3.3b) 

L~ = au.v - av,~ (3.3c) 

K~ = b,,v - by,, (3.3d) 

L a.~ = l s  (3.3e) 

Ka,. = �89 p" (3.3f) 
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where {%} and {b,} are, respectively, gravitational and Heavisidian (g- 
magnetic) four-potentials, and other symbols have their usual meaning as 
in Section 2. Like electromagnetism, the theory of gravito-dyons describes 
the existence of generalized charge, potential, current, and generalized field 
tensor as complex quantities with their real and imaginary parts as gravita- 
tional (g-electric) and Heavisidian (g-magnetic) constituents, i.e., 

v u = % - i b ,  (generalized four-potential) (3.4) 

su =j~6) :I(H) (generalized four-current) (3.5) - -  t j ~  

g~v =f~v-/f~v (generalized field tensor) (3.6) 

Equations (3.2) and (3.6) can be combined into the following covariant 
field (Maxwell-Dirac) equation for generalized gravito-Heavisidian fields 
of gravito-dyons: 

guv,v = - s ,  (3.7) 

Equation (3.7) is the generalized field equation (i.e., Maxwell-Dirac 
equation) in covariant form of gravito-dyons. This equation is invariant 
under Lorentz transformations, gauge transformations, and duality trans- 
formations and also follows the conservation laws, like the generalized 
electromagnetic fields of dyons given in Section 2. A gauge-covariant and 
rotationaUy symmetric theory of the angular momentum operator for 
gravito-dyons has already been described by Rajput (1982, 1984) in terms 
of structural symmetry between the generalized electromagnetic fields of 
dyons and the generalized gravito-Heavisidian fields of gravito-dyons. The 
duality transformation (2.8) also holds good for generalized fields of 
gravito-dyons in terms of structural symmetry. In other words, we interpret 
the results of the generalized theory of gravito-dyons as gravitational 
analogs of the generalized electromagnetic fields of dyons. 

4. COMBINED GRAVITO-HEAVISIDIAN AND 
ELECTROMAGNETIC FIELDS OF DYONS 

We are now in position to combine the generalized electromagnetic 
fields of dyons and the generalized gravito-Heavisidian fields of gravito- 
dyons by enlarging their Abelian gauge group structures. Let us start with 
the Lagrangian density of these two fields. The total Lagrangian density 
which couples the gravito-Heavisidian and electromagnetic fields of dyons 
may be written as 

L = LEM + L~H (4.1) 
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with 

and 

1 ~  + / ~ # v  .d- i V +  i rp  LEM=M--~ ,~u~  - -2 - - ,~  +h.c.  (4.2a) 

~+a~,v ~ +s u+h.c .  LcH=M--~g ,~6  +~v~ (4.2b) 

where h.c. denotes Hermitian conjugate, and the other terms have already 
been explained in Sections 2 and 3. The effective mass M of dyons and 
gravito-dyons is defined as 

M~fr = rn - (ct - 1)/2h (4.3) 

where ct = + 1 for generalized electromagnetic fields and �9 = - 1 for gener- 
alized gravito-Heavisidian fields of dyons. The Lagrangian density given by 
(4.1) yields the field equations (2.6) for generalized electromagnetic fields 
and equation (3.7) for generalized gravito-Heavisidian fields of dyons. The 
Lagrangian density (4.1) also yields the following forms of the Lorentz 
force equation of motion respectively for generalized electromagnetic and 
generalized gravito-Heavisidian fields: 

M s  u = Re(q*G~,~U v) (generalized electromagnetic fields) (4.4) 

and 

MS~, = Re(Q*g~,vuO (generalized gravito-Heavisidian fields) (4.5) 

where {u v} is four-velocity of particles, 5~ is the four-acceleration, and Re 
denotes the real part. We can write equations (4.1) and (4.2) as 

- -  1 - _  + ~,uv ('~r + t~r,uv'~ 1 + # L = --M--g~,g~v~, +--~v--  , +5(Vu S + V + J  ~) + h . c .  (4.6) 

and the combined field equations and Lorentz forces as 

a~(Guv + gu~) = (~  - su) (4.7) 

MS~ u = Re(Q*guvu ~ + q*Gu~ U ~) (4.8) 

In deriving the equations of motion (4.8) we have taken into account 
the standard relation between four-velocity, four-current, and the respec- 
tive charges of the generalized fields. To put the gravito-Heavisidian and 
electromagnetic fields of the dyons in a compact form in terms of single 
charge and potential, etc., let us define the combined generalized charge of 
these two dyons as 

Z = q - j Q  (4.9) 

where j = w / -  1 is an imaginary quantity other than i = ~ / -  1 given in 
Sections 2 and 3, q and Q are, respectively, given by equations (2.1) and 
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(3.1), and i . j  follow the relations 

and 

i j  = - - j i  = k (say) 

Bisht et aL 

i ( i j )  = ( i i ) j  = - - j  

( ( j ) j  = i ( j j )  = - i 

i k  = - k i  = - j  (4.10) 

k j =  - j k  = i 

i 2 = j 2  = k 2 = _ 1 

As such, equation (4.9) is a quaternion with basis elements (1, i , j ,  k )  and 
the combined electromagnetic and gravito-Heavisidian fields are quater- 
nion-valued quantities, 

Z = (e  - ig)  - j ( m  - ih) 

= e - ig  - j m  - k h  (4.11) 

Similarly, we write the potential, field tensor, and current source densities 
of the combination of generalized fields of dyons and gravito-dyons as 

C~, = A• - iBm, - j a ~ ,  - kb~, (4.12) 

W~,v = F~,v - iFa~ - j f ~ , ~  - kffu ~ (4.13) 

j~, = j j ,  - ijt, - jj(u ~  - kj(u r'I) (4.14) 

The quaternion conjugate charge of combined electromagnetic and gravito- 
Heavisidian fields of dyons is defined as 

Z = e + ig  + j m  + k h  (4.15) 

The Lagrangian density may be written as follows in a compact, simpler, 
and consistent form: 

L = - ~.r - ! w  ~ mltvmpr l..-.r �9 .uv ~" 8"U~Vp~'l "1 +~t~uJ~r/ +q.e.  (4.16) 

where q.e. denotes quaternion conjugation values and q,v is the fiat-space 
time metric with signature 2. The combined gauge-variant momentum then 
may be written as 

P u  ~ P~ - �89 + q.e. 

= p~, - eA~, - g B ~ ,  - -  ma~, - -  hb~ (4.17) 
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which leads to the equation of motion (4.8) into the following compact and 
simpler form: 

M2~, = (ZWuv + q.e.)u v 

I - -  v =~ZWu~u  +q.e. (4.18) 

The Lagrangian density (4.16) also yields equation (4.18) and the following 
convenient simple and compact form of the field equation (3.14): 

W~,~,~ = ~ (4.19) 

Here we have combined the generalized electromagnetic and generalized 
gravito-Heavisidian fields into simple and compact quaternionic forms. 

5. NON-ABELIAN GAUGE THEORY OF DYONS 

Now we extend our theory of dyons given in Section 2 for the Abelian 
case to non-Abelian Yang-Mills gauge theory. The invariance of the 
generalized field equations of dyons in non-Abelian gauge theory is ob- 
tained under local gauge transformations: 

~ 0 '  = S-lq,  (5.1) 

where S is the local gauge group element of a 2 x 2 unitary unimodular 
SU(2) isospin rotation group and describes the isospin doublet. Identifying 
the generalized potential V, of dyons as the Yang-Mills potential in terms 
of 2 x 2 Hermitian matrices in internal gauge space, all the derivatives of O 
are defined as covariant derivatives, 

V u = ~,  - q * V ~ , ( x )  (5.2) 

where the vectors and cross product ( x ) are defined in internal space, and 
q is a coupling constant. The non-Abelian gauge field strength is therefore 
defined as 

N.v = V,, - V~ u + iq*[V,, Vv] 

= G~,v + iq*[V u, Vv] (5.3) 

where 

G.v = V.,v - V~,. (5.4) 

For gravito-dyons the coupling constant q plays the role of generalized 
mass, while in general it is identified as the generalized charge or isospin 
charge in the Yang-Mills gauge space. 

In the internal two-dimensional complex space introduced at each 
point of Minkowski space-time, the charged field described by ~ in SU(2) 
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is replaced by exp{iA~ is SU(2) • U(1), where A~ is a phase factor 
for U(1). Then the basis spinors of this internal space are acted upon by 
the following elements of SU(3): 

= S(x) exp[ - iA~ (5.5) 

under this gauge transformation, the 2 • 2 matrix potential Vu and the 
matrix field tensor Guy transform as 

v~ = g - ' v . ~ -  ~-' Gg (5.6) 

and 

C~v = g - l G , v g  (5.7) 

Instead of matrices V~ and G,~, we may define the gauge potential V~ and 
the gauge field strength G~,v as 

V. = V~. F a (5.8) 

G,~ = G~,~ F ~ (5.9) 

where repeated indices are summed over 1, 2, 3. The matrices Fa describe 
the infinitesimal generators of  the group SU(2) and satisfy the commuta- 
tion relation 

[Fa ,  Fb] = iEabcFc (5.10) 

Let us write equation (5.3) as 

fg ~,~ = ~ V~, - ~ , V~ + q* E~b~ Vb~ Vc. (5.11) 

f9~,~ = G~,v + q*s Vbv Vc~ (5.12) 

The covariant derivative of the field tensor G~,~ is given as 

VYg~,~ = d~G~,~ + iq*V ~ x G~v = J~ (5.13) 

or  

where 

and 

VV~at~v = ~3VGauv --b q*s VbvGc~v = Ja~ (5 .14)  

J~ = j ,  + iq*V v x G~.v (5.15) 

dau = Jau + q*C~bc VbVGcuv (5.16) 

are the generalized four-current with field associated with dyons. From 
equations (5.15)-(5.16) we get the conserved Noetherian current as 

j~, = J~ - iq*V v x G~v (5.17) 
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which gives 

while 

~ j .  = 0 (5.18) 

V ' J ,  = 0. (5.19) 

These equations show that Noetherian current j ,  is conserved while the 
generalized non-Abelian current J~ is not, but satisfies a generalized 
conservation law on replacing the ordinary derivative by the covariant 
derivative. 

6. NONABELIAN GAUGE THEORY OF DYONS 

In order to extend the theory of generalized gravito-Hcavisidian fields 
of gravito-dyons to the non-Abelian case and to apply the Yang-Mills 
method to the gravitational field, the use of spinors is usually considered. 
Though our theory of gravito-dyons resembles the generalized electromag- 
netic fields of dyons, still it is hard to describe the isospinors with this 
theory, as we do not have the known internal quantum number in the 
linear theory of gravitation. Therefore we apply the method of spinors to 
extend the Yang-Mills method to generalized gravito-Heavisidian fields of 
gravito-dyons. For this case we consider the non-Ricmannian space-time of 
Einstein's nonsymmetric theory associated with n-dimensional space. In 
this case we identify the symmetric part as pure gravitation, and the 
antisymmctric part subjected to an electromagnetic field as gravi-electro- 
magnetic [i.e., field coupled by gravito-Heavisidian charge (mass)]. 
Analogous to the theory of dyons, the generalized four-potential of grav- 
ito-dyons is defined as 

V~,=.4,-iBu=5~,-iQ*~, (6.1) 

with 

and 

.4, = G, + hT~ (6.2a) 

~u = - m_T~, (6.2b) 

where b', is the usual space-time gravitational four-vector potential and ~ 
is the gravito-electromagnetic potential subjected to the antisymmetric part 
of the nonsymmetric metric, q, m, and h are described in Section 3 as 
generalized charge, gravitational, and Heavisidian charges. Four-potentials 
.~. a n d / ~  are visualized as gravitational and Heavisidian potentials. These 
two four-potentials may be interpreted as potentials describing the coupling 
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of the Heavisidian monopole with the gravitational field and the coupling 
of gravitational mass with the gravito-electromagnetic potential; the gener- 
alized potential V, is described here in terms of 2 x 2 spin matrices. 
Adopting the same procedure of generalized electromagnetic fields of 
dyons, we describe the invariance under the transformation matrix 

S(x) = S(x) exp{-  iA~ (6.3) 

where S(x) is the local element of group S L ( 2 ,  c) and requires the following 
transformation of generalized potential matrix V.: 

V~ = S - l(x) V/t S(x)  - S - 10p S (6.4)  

which yields 

b'. = S - l ( x ) b . S ( x )  - S - ' c ? u S  (6.4a) 

a'~ = a u + IQI-I~uA ~ (6.4b) 

where Q = (m 2 + h 2) 1/2. The transformations of potentials A . ( x )  and B . ( x )  
may then be written as 

A.(x)' = ~ - I A u ( x ) ~  _ ~ - t  O . ~ _ t a n O ~ - l B ~ ( x ) ~ _ i s i n  0 Ou Ao,(x)  

B'u(x ) = B~,(x) - I cos 0 ~, A~ (6.5) 

where 0 = tan- 1 h/m.  
The generalized field tensor for gravito-dyons is then defined as 

G~v = ~v Vu - ~uVv + i Q * ( V . ,  Vv) (6.6) 

which is a 2 x 2 complex traceless matrix. Here Q* is the complex 
conjugate of the generalized mass Q of gravito-dyons. This field strength 
may also be written as 

G~,v = G.v + iQ*If~,v (6.7) 

where 

and 

G~,~ = Orb. - 3.bv + iq*(b~,, by) (6.8) 

fur = Ova, - OI, av (6.9) 

On taking the covariant derivative of equation (6.7), one can write the 
following expression for field equations of gravito-dyons: 

WG~, v = VGuv + i q ,  V v x Guy = J~, (6.10) 

where for brevity we have taken the Einstein gravitational constant (k = 1) 
and Ju is the generalized current representing the source of the field of 
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gravito-dyons, defined as 

J~, =j~, + iq*V  v • G~,v = J .  (6.11) 

where 

= j~o~ _ 0.~H) (6.12) 

and yields the following conservation law: 

V"J u = 0 (6.13) 

In equation (6.12)j , ,  the generalized current, is the combination of the 
gravitational and Heavisidian currents obtained from the corresponding 
potentials. 

7. NULL TETRAD FORMULATION OF NON-ABELIAN 
DYONS AND GRAVITO-DYONS 

Now we reformulate the non-Abelian gauge theory of dyons (given in 
Section 5) by means of the null tetrad notation of Newmann and Penrose 
(1962). Recently we have reformulated (Rajput et aL, 1991b) the general- 
ized fields of dyons (given in Section 2) in terms of null tetrad notation by 
writing spinor-equivalent forms of corresponding fields, potentials, cur- 
rents, equations of motion, and gauge-invariant-cum rotationally symmet- 
ric angular momentum operators with the extension of the Abelian gauge 
group U(1) to the SL(2 ,  c) gauge group. Here also we follow the approach 
and notations of Carmeli (1977a, 1982), who studied the SL(2,  c) gauge 
theory of gravitation by enlarging the gauge group SL(2,  c) x U(1) • V'(1) 
to accommodate gravitation, electromagnetism, and monopoles. The differ- 
ence between Carmeli and Huleihil's (1984) theory for applying the New- 
mann-Penrose method to the Yang-Mills field and the theory we are 
going to present here is that the former deals with the study of Yang-Mills 
gauge theory directly modeled from electromagnetism, while the latter 
describes the two-potential theory of dyons. In other words, our theory of 
Yang-Mills fields (given in Section 5) is modeled from the generalized 
electromagnetic theory (Section 2) of dyons instead of usual electromag- 
netism. The generalized fields, potentials, currents, and other quantum 
equations for dyons presented here are self-dual. 

Following Newmann and Penrose (1962) and Carmeli (1977a,b, 1982; 
Carmeli and Huleihil, 1984; Carmeli et al., 1989), we define a null tetrad of 
basis vectors lu, n~, m~, and rh~ introduced at each point of the four-dimen- 
sional- Riemannian manifold with signature 2. The tetrad is made from two 
real null vectors, l~ and n,, and a pair of complex null vectors, mu and rhu. 
The null tetrad basis vectors l~, n u, m, ,  and fft~ are defined in terms of the 
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orthonormal basis (Uu, V~, Wu, 
three are spacelike vectors, i.e., 

t , =  

n u 

Zu), where Vu is timelike while the other 

l/~(u. + v.) 

1 / v / 2 ( U u -  V+,) 

m~, = 114 '2 (W.  + iZ+,) 

m ,  = 1/~(w. - i z~ , )  

(7.1) 

(7.2) 

(7.3) 

(7.4) 

These null tetrads satisfy the following pseudo-orthogonality relations: 

P'n~, = - mUrhu = 1 
(7.5) 

P'I~, = rnUm~, = n~'n~, = rhUlh~, = 0 

The generic symbol Z~ 'p  for the null tetrads ( l ~ , , m ~ , n # , r h ~ , )  with 
p = 0, 1, 2, 3 yields the following expression for the contravariant compo- 
nents of the metric tensor: 

g#v = Z ~ Z q ~  pq 

= 2[l<UnV> - m<~rhv>] 

= p ' n  ~ + U n  ~' _ m~,fft~ _ rnVrh~ , 

where ~]Pq is the flat space-time metric, 

0 0 
~Pq  ~ 

0 0 
0 0 - 1  

and is used to raise and lower 

0) 
0 

- 1 = qpq  

0 

the tetrad indices, i.e., 

(7.6) 

(7.7) 

l~ = g~vlV; n~, = g~vn~; m u = guvm~;  rh u = g u j ~  ~ (7.8) 

The internal space has been chosen as a two-dimensional complex 
space spanned by a pair of spinors and the gauge field equations are the 
Newmann-Penrose (1962) equations. One of the advantages of the 
S L ( 2 ,  c)  approach of Carmeli (1977a, 1982) is the possibility of deriving 
equations for Newmann-Penrose spin coefficients in terms of null tetrad 
basis vectors and their intrinsic covariant derivatives. The S L ( 2 ,  c)  matrix 
G, whose elements are written in the following manner, is made up from 
the two basis spinors G~ (a, A = 0, 1): 

(1o l l )  
G = IIa0 ~ II = n o n I (7.9) 
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The variable a uab. , where aj are 2 • 2 Pauli spin matrices for j = 1, 2, 3, and 
ao is a unit matrix, are defined in terms of null tetrad vectors as 

m ~ 
II  b'tl = . V  n" ( a , b ' = 0 ,  1) (7.10) 

The intransic derivatives (i.e., the directional covariant derivatives) are 
defined as elements of the matrix, 

V J  -~" ~Vlo ,  Vi i ,  J ( 7 . 1 1 )  \ 6  

where 

D = V~,I ~' = l'O~, (7.12a) 

V = V~,n ~' = n~'O~, (7.12b) 

6 = V~,m ~ = m~'O~, (7.12c) 

~ =  Vl, rh~' = rhUO~ (7.12d) 

On the other hand, the ordinary derivative a~ is defined as 

Op = a~b'Oab , (7.13) 

The dyad coefficients of the matrices are given by 

Cab, = a~b, Cu (7.14) 

where the four-matrices Cab" have the form 

(7.15) 

(5.9), let us decompose them into real and imaginary parts, 

Re V~ = A~ = A~,F a = p u a  Fa (7.16a) 

Im V~ = B u = B~aF a = q~aF a (7.16b) 

Re Guy = Euv = F uvaF a =f~va Fa (7.16C) 

__ d __ d a F a  Im G~,v - H~,v - Fuva F = h~,va (7.16d) 

and C~. is the Hermitian conjugate of Cab'. The 12 elements E, k, n, etc., of 
the matrices Cab" are functions that were first introduced by Newmann and 
Penrose and are called the spin coefficients. 

Before applying the null tetrad method to Yang-Mills  generalized 
potentials and fields of dyons, respectively, given by equations (5.8) and 
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where 

and 
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f ,~, ,  = Pu~,~ - -  P~,~, + ql  EabcP~bPu~ (7.17a) 

h~,~, = q~,~,~ - q~,~, + q2 ~,,b, qvb quc (7.17b) 

where #, v are space-time indices and a, b, c are Yang-Mills indices for 
internal symmetry; G,~ is the Yang-Mills gauge field strength modeled 
from the dynamics of electric charge and obtained from its gauge potential 
Au, and Fua~, is also the Yang-Mills field strength obtained from another 
gauge potential B, responsible for the dynamics of magnetic charge. These 
two Yang-Mills gauge field strengths and the corresponding gauge poten- 
tials are coupled to the complex gauge field and gauge potential of dyons 
by equations (5.8) and (5.9). Let us define the following spinor-equivalent 
(i.e., tetrad component) forms of Yang-Mills potentials and fields as: 

Pac'k = a ~c'P,k (7.18a) 

f~b'ca'k = a~b, a~a,fu~k (7.18b) 

qac'k = O" a~c , q u k  (7.18c) 

hab" ca'k = aU~b,a ~a , f~k  (7.18d) 

where a, b', c, d' are spinor indices taking the values 0, 1 and 0', 1'; k is the 
Yang-Mills index taking values 1, 2, 3 for the SU(2) group denoting the 
vector components in internal space; and #, v are space-time indices taking 
values 0, 1, 2, 3 in Minkowski space-time. 

Equations (7.18a) and (7.18c) can be combined into the complex form 
of the generalized potential of dyons, 

Vac,~ = aaUc , V~ (7.19a) 

Vuk = P~,k - -  iq~,g (7.19b) 

Similarly, (7.18b) and (7.18d) couple to the following spinor-equiva- 
lent form of the generalized field strength of dyons: 

Gab,cae k = ff~ab, CrVcd, Guvk (7.20) 

Guvk = f i ,  vk - -  ih~,~1, (7.20b) 

We are now able to decompose real Maxwell antisymmetric tensors with 
tetrad components in the following forms: 

fab" cd' = s -I- ~gac%, d, (7.21) 

hab'cd" = s H- ~]abs  " (7.22) 
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where 

~bac = ~b~a = lfbb, ~ (7.23) 

lilac = ~ca = ~hab'cl b" (7.24) 

and q~b'd" and ~/b'd" a re  complex conjugates of ~)bd and r which may be 
called the electromagnetic field spinors associated with electric and mag- 
netic charges. In equations (7.21) and (7.22) E~ and Eb, d, (and e a~, e TM) are 
the Levi-Civita antisymmetric spinors given by 

The spinor indices can be raised or lowered with the help of these 
spinors as 

r e ~ c  

~ =  ~~ 
which immediately shows 

(~" is a 2-component spinor) (7.26a) 

(7.26b) 

~ = --r (7.27) 

For every pair of indices we may define a symmetric and antisymmetric 
part: 

Cab = l ~ab ~ Cc 1 + ~ G  (7.28) 

The tilde over the indices a and b indicates that a symmetric transformation 
is to be performed as ~G = ~b, + Cab. 

Equations (7.18b) and (7.18d) may directly be expanded in the follow- 
ing forms in terms of their null tetrad components, on substitution of 
equations (7.11) - (7.15): 

fab'cd'k = d~a'Pab'k -- ~ab'&a'k --IA~a "l~prb'k 

--P~,'k I A L  If + (Aab')~P,dk 

+ r" (7.29) + Pcr'k ( A  b'a) d -'}- g l s 

and 

hab'cd'k = Ocd'qabqc - -  Oab'qcd'k -- [Bcd'l~qrb'~ 
q- r" r 

- -  qar'k [Bd'c [b + (Bab')cqrd'k 

+ + r" (7.30) qcr,k ( B b,a) d -q- g2s mqcd, l 

In analogy with the decomposition of Maxwell's field tensors given by 
equations (7.21) and (7.22), we may decompose the Yang-Mills field 
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strengths fab'cd'k and hab,cd, k in terms of  dyad components X~bk and ~ab~ of 
the symmetric spinors ZASK and ~kAB r as 

fac'bd'k = eab ~c'd'k "q- s Zabk (7.31a) 

hac,bd, k : s ~l c,d,k + s abk (7.31b) 

Generalized Yang-Mills  fields and potential associated with dyons 
can then be written as follows in terms of  complex quantities: 

~ (7.32a) qab'caek = fab'caVk - -  ihab,cd, k = a,~b, tr cd, qu~k 

V ~ , k  = P,,~'k - -  iq,,~,k = a ~ ,  V~k  (7.32b) 

is then written in terms of the following null tetrad Equation (7.32a) 
notation: 

where V = A - i B ,  

and 

qab'ca'k = Ocd'qab'k - -  ~ab'qca'k - -  IV  ca" [~aqrb'g 

- -  qar'k I V , ~  I~ + ( V ~ b ' ) ~ q m ' k  

+ r" 
+ q c r ' k ( V b ' a ) d  + q*s (7.33) 

q = q l  - -  iq2 (7.34) 

q,,~'ba'k = eab49~'d'k + e~a, r  (7.35) 

r = X - i~b (7.36) 

The spinor r is symmetric in its spinor indices a and b and consists 
of 3 x 3 complex components r ~bolk = r and ~bllk with k = l, 2, 3. 
These nine components are again complex for the generalized theory of  
dyons and their real and imaginary constituents are equivalent to the real 
components of  electric field strength f~vk  and magnetic field strength h~k. 
Thus the components Hook,, ~0~k = Xl0k, •llk, ~book, ~bolk = ~q0k, and ~bllk are 
real-valued spinor components of the generalized spinor ~b associated with 
generalized electromagnetic fields of dyons. In the light of equations (7.21), 
(7.30), and (7.31) we can write the components Z, ~k, and q~ as 

~Ok ~-- HOOk 

= (3 - f l  + fc - -  a)Poo'k - -  ( D  + ~ - -  * - - i f ) P o r k  + P , o ' ~  - -  k p l v k  

+ g I EjtmPoo'mPo l"t ( 7.37) 



Nul l  Tetrad Formulation of Non-Abelian Dyons 2117 

~ l k = ~ O l k  

~ Z l o k  

= l ( v  - -  fi  -1-- ]..t - -  "17 - -  ~)POO'k - -  ((~ "~= ~ - -  ~ - -  ~" - -  ~ ) P o l ' k  

+ ( 6  + T + fl + ~r - a)p,o,k - (D + p - fi + e + e)Pn'k 

+ g i  Ektm(POO'mPlr l  - -  POvmPlO' t )  

Z 2 k = ~ l l k  

= -- Vpoo'k + 2Pork + (V + v -- ~ + fi)P~o'k 

- -  (g  d- ~t d- f l  - -  T)P ,  vk q- gleklmPlO',,,Pxrl 

(7.38) 

Similarly, the expressions for ~b0k, fflk, and O2k can be written explic- 
itly; the Yang-Mills field equation for the generalized gauge theory of 
dyons is given by equation (5.13). This equation is self-dual in terms of 
duality transformations given in Section 2. The spinor-equivalent form of 
the Yang-Mills field equation (5.13) is written as 

Thus we have 

V AB "GCD'AB" : - -gs  VAB' IGCD'AB'm "F jCD"  

G cD'aa" = 2ED'a'zCA (7.41) 

on using the self-duality of spinors, i.e., 

X ~ Z; @ ~ - i@ so that q~ ~ (;b = U' (7.42) 

while in general X and ~ follow the duality transformation equation (2.8). 
Thus equation (7.40) reduces to the following expression for the general- 
ized Yang-Mills field equation of dyons: 

EDW'v AB,/Ca = _gektm VaB'IGCD'.4B'm q_ j c o "  (7.43) 

This equation resembles the Yang-Mills field equation of Carmeli (1977a, 
1982) on imposition of the following self-duality conditions for dyonic 
fields: 

AI,--) A t ;  B u = - i A  u ~ V~ = A u 

1• ppa F,v = F,v = A~.~ - A~.. ; F~. = F ~  = ~ . ~ _  

G, .  = F , .  - w ~ ,  

(7.44) 

(7.40) 

(7.39) 
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so that 

f ~+)CD'aB" = G CD'aB" = 2e O'B" z Ca 

From the foregoing analysis Carmeli's (1977a, 1982) equations can be 
written by letting the magnetic potential vanish. Unfortunately, one-poten- 
tial theory is not enough to describe particles carrying the simultaneous 
existence of electric and magnetic charges, free from Dirac (1931) string 
singularities in Abelian gauge theory. To remove arbitrary string variables, 
a two-potential description of dyons is essential. On the other hand, in 
self-dual Yang-Mills non-Abelian gauge theory, where monopoles appear 
as classical solutions of gauge field equations, one is free to choose a 
one-potential description of dyons. But if one defines Yang-Mills theory as 
the direct modeling of electromagnetism, two-potential description of 
dyons in Yang-Mills gauge theory not only solves the singularity problem 
of Abelian gauge theory, but also leads to dual dynamics between electric 
and magnetic charges in internal space where they appear as the classical 
solutions of Yang-Mills field equations. Second, the dyon field equations 
remain self-dual invariant in Abelian and non-Abelian gauges, 

Adopting the procedures of writing dyad components in terms of spin 
coefficients explicitly, we write the generalized Yang-Mills field equations 
of dyons in the following null tetrad notation: 

6r - DqSlk = (2~ -- r0r -- 2pqSlk + k ~ g z k  

+ gCktm ((OOt Vlo',, - -  (all Voo'm) "q- 27ZJ0o'~ (7.45a) 

S~91k - -  D r  = }~)Ok - -  2/Z•lk -I- (2e - -  P ) ~ ) 2 k  

+ gektm((au VIo,m - ~2t Voo,m) + 2rCJlo,k (7.45b) 

V~bok - 6r = (2T --/~)q~ok - 2Tr + ar 

+gektm(C~otVll ,m --  r + 2rcJol,k (7.45c) 

Vq~lk -- 6~b2k = v~bok -- 2#~blk + (2/3 -- T)r 

+ gek tm(r  -- Cz tVovm)  + 2rJlvk (7.45d) 

These equations are just the generalizations of our Maxwell-Dirac equa- 
tions of dyons with the latter as described by Bisht et  aL (1991b) in null 
tetrad notations. Equations (7.45) are obtained by doubling Carrneli's 
equations and defining quantities like qS, V, and J (as complex quantities) 
associated with dyons carrying electric and magnetic counterparts as their 
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real and imaginary constituents. Let us write the line 
Minkowskian space-time {x ~} in retarded (null) 
X 0 = U, X t = r ,  X 2 = O, X 3 = ~ a s  

ds 2 = clu 2 + 2 du dr - r2(dO 2 + sin 2 0 d~b 2) 

2119  

element of 
coordinates 

(7.46) 

where the retarded time coordinate takes the value u = t -  r and use of 
natural units c = h = 1 is made throughout. In this null coordinate system 
U, m ", and n" are defined as 

l ~ = 6~' 

m "  = 1 /v /2r (6  ~ + / / s i n  0 6~) (7.47) 

n # A#  ! , ~ #  ~ v  0 - - 2 , J 1  

This choice of tetrad yields the following values of spin coefficients: 

e = k = ~  = a  = 2  = r =  T = v = O  
(7.48) 

p = 2# = 1/r; fl = - ~  = 1 /2x /~ r  cot 0 

and the directional derivatives get modified into the following explicit 
forms: 

D = O/Or; 6 = 1 / x / ~ r ~ ;  V = O/Ou - �89 O/Or (7.49) 

where 

@ = O/00 + / / s in  0 O/0~b 

Substituting these expressions in equations (7.37)-(7.39), we get the fol- 
lowing relationships between the generalized Yang-Mills  potential and 
fields of dyons: 

(aok = 1/x/~rDVoo,  k - ( O / O r  + 1/r)Vovk 

"q- gs VO0"I Vol'm (7.50) 

C~,k = I{(O/OU -- �89 + 1/v/2r[(~ + cot O)V,o,k 

-- (~  + cot 0)V~0,k] -- O/Or Vlvk  

+ gEmtk(Voo,tVtl,m - VovtVlo,m)} (7.51) 

( /a.-�89 - 1  1 -  = ~r) Vlo,k - ~ r ~  Vi vk 

"~- gernlk Vlo'l V1 i'm (7.52) 

Similarly, the Yang-Mills  field equations given by equation (7.45) get 
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modified to the following equations of dyons: 

(d/Or + 2/r)4h, 

= 1 / v / 2 r ( ~  + cot O)~bot + gcktm(OOk Vlo'm -- ~blk Vow,n) + 2nJoo,l (7.53a) 

(OIOu + - � 89  - �89 ~10r)4~o, 

= �89 + gEk,,l(~bok Vu,m - ~blk Vovm) + 2ZJovt (7.53b) 

(d/Or + 1/r)4J2t 

= 1/x /2r~(al t  - gEk,~t((01~ V1O'm -- 492k Voo,m) + 2nJlo't (7.53C) 

(OlOu - �89 ~l~r - llr)4~,, 

= llx/~r(~ + cot  q~)tk2t + gEkml((Olk VI l'm -- ~2k Vol'm) -F 2/rJ 11,1 (7.53d) 

In order to seek the solutions of the generalized Yang-Mills field 
equations of dyons, let us start with our complex field strength spinors q~lOk 
and ~21k and use q~ok = q~OOk, ~blk = q%lk = ~blok, and ~2k = ~blik and O'a~b , is 
a tetrad of null vectors with 

t ~ = 6  o 

m~ = - r / v ~ 2  (6 2 + / / s i n  0 6~) (7.54) 

I 0 1 1 

The functions Voo,k, VOVk, V~ov,, VIvk are the potential isotriplet related to 
V~k by 

Vf,k = n~,Voo,k -- fit, Vo,,~ - m u Vlo,k -~- l u Vll'k (7.55) 

and Vovk = V~o,k. The angular dependence of the complex field strength 
spinors ~bo, ~bl, and ~2 is expressed as 

~)0 ~" Ofm(O, dp) 

q~l "~ D'om(O, ~) (7.56) 

4J2 "~ DL~,.(O. 40 

and 

Vow ~ D'~m ( O, c~ ) 

Vo,, ~ Dfm(O, ~) 
(7.57) 

Vlo, ,~ Od_lm(O, ~) 

where J Dmn(O, qb) are the matrix elements of a reducible representation of 



Null Tetrad Formulation of Non-Abelian Dyons 2121 

the group SU(2) in internal isospin space where the isospin index fixes the 
second index of matrix elements DNM. Thus 

4~o,~, ~ D~,,+,(O, r 
(7.58a) 

~o,3 "~ Df, o(O, ~b) 

and 

q~o,_+l = 1/v/2i(~bo~ + ~bo2); q~o,3 = q~o,3 (7.58b) 

To obtain the dyon solution, we take the J = 1 case and the assumption of 
an r-~ dependence of potentials. Then we get 

Voo'k = 2a/grnk(O, q~); Vovk = ie/x/~gr~nk(O, q~) 
(7.59) 

Vlo'k = --ie/x/~gr~nk(O, qS); Vl,,k = b/grnk(O, (a) 

where a, b, and e are arbitrary real constants and nk(O, dp) is a unit vector 
given by 

nk(O, ~b) = (sin 0 cos ~b, sin 0, sin q~, cos 0) (7.60) 

along with the requirement ~bok = r = 0 and 

qbl~ = (a + b + i)/2grEnk (7.61) 

The Yang-Mills  potential and the field strength of dyons satisfy the 
Yang-MiUs field equations without sources on making Joo,, Jlo,, J0i', and 
J~v in equation (7.53) vanish. Thus the dyonic Yang-Mills  equations 
without sources are symmetrical and identical for electric and magnetic 
potentials. Two sets of Yang-Mills  equations of dyons (i.e., for real and 
imaginary parts of dyonic potentials and field strength spinors) are the 
same if one imposes the duality conditions (7.41)-(7.44). In this case two 
potentials and field strength spinors of dyons reduce to one potential and 
one field strength spinor, i.e., 

~b = q/, V =p ,  g~ =f~v (7.62) 

As such one can directly write the following forms of potentials and field 
strengths: 

Pok = (a + b)/g " xk/r 2 

Pjk = l /g{ --ejktXl/r 2 + (a + b)xJxk/r 3} 
(7.63) 

fojk = - ( a  + b)/g " xJxk/r  4 

f jk  = 1/gEij, X'Xk/r4 

where flat space-time coordinates are taken, x ~ = t, x ~ = x, x 2 = y ,  x 3 = z. 
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Similar solutions can also be written for magnetic potential and field 
strength if one takes tk ~ ~b, V ~ q, and g.v ~ h~. Now choosing a = b and 
a + b = e, one gets, 

Pok = e / g  �9 x k / r  2 

Pjk = --  1/g " ejkt " x l / r  2 
(7.64) 

fo jk  = - -  e / g "  x J x k / r  4 

f y k  = l / g "  Eijn " x n x k / r 4  

On the other hand, for the magnetic potential, we choose a = b and 
a + b = q to maintain the duality between electric and magnetic con- 
stituents. In the former case the potential satisfies the condition in Lorentz 
gauge O , A ~  = 0, while for the latter case it satisfies d~B~ = 0. In both cases 
the solutions reduce to the Yang-Mills solutions (Wu and Yang, 1969) of 
pure monopole (electric charge) as well as the Julia-Zee (1975) solutions of 
dyons. The constant e may be interpreted as g times the electric charge of 
a dyon. Here g is the Yang-Mills coupling constant and is different from 
the magnetic charge of Section 2. These solutions represent the field of dyons 
which has both an electric (magnetic) charge e / g  and a magnetic (electric) 
charge 1/g. Maxwell's field strength spinor for dyons then reduces to 

e + i g  
q~0 = q~2 = 0 and ~b 1 - 2r 2 (7.65) 

For these solutions the Wu-Yang  (1969) solutions are found by taking 
electric charge e vanishing, while the Julia-Zee (1975) dyon solutions can 
be written by modifying equation (7.64) as follows 

A'd = pg  = x a / r  �9 J ( r ) / e r  (7.66) 

A ~. = p~  = EabiXb/r2[k(r) --  1]/er (7,67) 

The foregoing analysis shows that the null tetrad method of Yang-Mills 
field equations can be extended well for particles carrying electric and 
magnetic charges (dyons). To seek the solutions of source-free Yang-Mills 
field equations one can impose the duality conditions between electric and 
magnetic constituents. Our solutions and field equations of dyons resemble 
the investigations of Carmeli (1977a, 1982), with the difference that we 
have formulated our theory from the beginning by means of two potentials, 
while the later described the same in terms of one potential. Second, our 
theory has two types of solutions in terms of two Yang-Mills gauge 
potentials. The two-potential approach is necessary to remove the arbitrary 
string variable in Dirac's (1931) theory of the magnetic monopole. Conse- 
quently the Maxwell equations without sources are symmetrical. We do not 
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find any use o f  two potentials in order  to seek the solutions o f  source-free 
Y a n g - M i l l s  equations. Still one is free to describe any one potential  for 
seeking the dyon  solutions. As such, two-potential  theory is the conse- 
quence o f  the Abelian gauge theory o f  dyons,  while one Y a n g - M i l l s  
potential is sufficient in non-Abel ian gauge theory where monopoles  appear  
as classical solutions o f  Y a n g - M i l l s  source-free equations.  The two poten- 
tial approach  describes well the duality between electric and magnetic  
constituents even in Y a n g - M i l l s  gauge theory and the solutions o f  Y a n g -  
Mills equations having both  electric and magnetic charges. 
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